STRUCTURES OF KOKZEYLANOL AND KOKZEYIANONOL TWO NEW NATURAL TRI- AND TETRA- OXYGENATED D:A-FRIEDO-OLEANANES

A.A. Leslie Gunatilaka: N.P. Dhammika Nanayakkara and M. U**vais** S. Sultanbawa Deparment of Chemistry, University of Peradeniya, Peradeniya

Sri Lanka

Abstract: Kokzeylanol and kokzeylanonol obtained from Kokoona zeylanica have been shown to be 6β ,27-dihydroxy-D:A-friedo-olean-3-one (1) and 6β ,27-dihydroxy-D:A-friedo-oleana-3,21-dione (2). respectively by the deoxygenation of their 27-acetoxy derivatives using Lithium-ethylene diamine reduction coupled with spectroscopic and irradiation methods. Kokzeylanonol represents the first tetraoxygenated D:A-friedo-oleanane isolated from a natural source.

Recent reports from this laboratory dealt with the application of an irradiation method $^{\text{1}}$ and triphenyl tinhydride deoxygenation of the derived thiobenzoates $^{\rm 2}$ in the structure elucidation of some novel 27-hydroxy-D:A-friedo-olean-21-ones and 6⁸-hydroxy-D:A-friedo-oleananes isolated from Kokoona zeylanica Thwaites (Celastraceae). We herein report the application of Li-(CH₂NH₂)₂ deoxygenation³ of sterically hindered primary alcohol function in the structure determination two new 27_hydroxyfriedelanes, kokzeylanol and kokzeylanonol obtained from the same plant; latter being the first example of a tetraoxygenated D:A-friedo-oleanane and is significant as polyoxygenated triterpenes are reported to exhibit anti-tumour activity. $^4\,$ This also constitutes the first report of the application of metal-amine reduction to deoxygenate primary alcohols. The methods known hitherto for this purpose are cumbersome and/or lead to rearranged products.^{5,6}

Spectroscopic evidence suggests that kokzeylanol⁷ is a D:A-friedo-oleanane triterpene containing oxo, hydroxymethine and hydroxymethyl groups $(\mathbf{v}$ 3610, 3490 and 1714 cm⁻¹; δ , 3.50 (1H, m, W₂ 18 Hz), 4.08 (2H, br s); m/z 427 (100%, M^+ -CH₂OH)¹]; and kokzeylanonol is a D:A-friedo-oleanane with two 0x0, a hydroxymethine and a hydroxymethyl function [(y3490, 1722 and 1714 cm $\tilde{ }$; $\tilde{ }$, 3.50 (1H, m, W₂ 18 Hz), 4.10 (2H, br s); m/z 441 (45%, M^T-CH₀OH)]. The steric crowding around the hydroxymethyl group in both compounds is apparent from the

 1 H-n.m.r. spectra of their acetates which show a clear dd (J 13 Hz). In order to relate kokzeylanol (<u>l</u>) and kokzeylanonol (<u>2</u>) to known D:A-friedo-oleananes, a deoxygenation procedure applicable to both primary and secondary alcohol functions was required. Presence of 0x0 groups ruled out the possible use of conventional Huang-Minlon reduction. 5,6 Triphenyltin hydride reduction previously employed by us to deoxygenate $6/$ -hydroxy- and 2l $/$ -hydroxy-friedelanes 2 having secondary alcohol groups, when attempted on 27-thiobenzoyloxyfriedelane (6) afforded 27-benzyloxyfriedelane (7) and not the deoxygenated product (friedelan). However, reduction of the derived acetate (5) by Barton's procedure, but employing Li-(CH₂NH₂)₂ proved to be the method of choice as exemplified by successful deoxygenation of several triterpene acetates bearing both primary and secondary alcohol functions (see Table),

Li-(CH₂NH₂)₂ reduction of kokzeylanol diacetate (3), m.p. 250-252^oC, followed by oxidation (CrO₃-pyridine) furnished friedelin, and similar treatment of kokzeylanonol diacetate (4) , \overline{m} .p. 270-272^oC, gave friedelan-3,21-dione (11)¹ (see Scheme). Kokzeylanol (1) has also been related to friedelan-3,6-dione (10) and the relationship between the two natural products was shown by Huang-Minlon reduction of both giving 6β ,27-dihydroxyfriedelane (12), m.p. 282-284 $^{\circ}$ C, identical with an authentic sample. 1 The foregoing evidence suggest that kokzeylanol is 6b,27-dihydroxy-D:A-friedo-oleanan-3-one Q) and kokzeylanonol is 6/B,27-dihydroxy-D:A-friedo $oleana-3,21-dione(2)$.

TABLE. Li- (CH_2NH_2) reduction of triterpene acetates

a
Reductions were carried out by heating a mixture of the triterpene acetate (50 mg), lithium (100 mg) and dry ethylene diamine (10 ml) under reflux in an atmosphere of nitrogen for 30 mins. Usual work-up (Ref. 3) afforded the product(s).

 b Product obtained after oxidation with CrO₃-pyridine at 25^oC, for 12 h.</sup> The presence of 21-oxo and 27-hydroxy functions in kokzeylanonol (2) was further confirmed by the irradiation^{1,8} (125 W for 12 h, in refluxing dry dioxan) of the NaBH_A reduction product (13) yielding 3 β ,6 β ,27-trihydroxy-E-secofriedel-19-ene-21-carbaldehyde (14)⁷, m.p. 130-132^oC (60% yield), formed by intramolecular $\mathcal{V}\text{-H}$ abstraction within the biradical produced by **d**-cleavage and 3 β ,6 β ,27-trihydroxy-21,22-bisnor-E-secofriedel-16,19-diene (<u>15</u>), m.p. 98-100 $^{\circ}$ C (30% yield), formed by Norrish type II process from (14) .

(1)
$$
R^1 = C
$$
; $R^2 = f-OH$, $C-H$; $R^3 = H_2$; $R^4 = CH_2OH$
\n(2) $R^1 = K^3 = 0$; $R^2 = f-OH$, $C-H$; $R^4 = CH_2OH$
\n(3) $R^1 = O$; $R^2 = f-OAc$, $\alpha - H$; $R^3 = H_2$; $R^4 = CH_2OAc$
\n(4) $R^1 = R^3 = 0$; $R^2 = f-OAc$, $\alpha - H$; $R^4 = CH_2OAc$
\n(5) $R^1 = R^2 = R^3 = H_2$; $R^4 = CH_2OAc$
\n(6) $R^1 = R^2 = R^3 = H_2$; $R^4 = CH_2OCH_2Ph$
\n(7) $R^1 = R^2 = R^3 = H_2$; $R^4 = CH_2OCH_2Ph$
\n(8) $R^1 = R^2 = O$; $R^3 = H_2$; $R^4 = CH$
\n(9) $R^1 = R^2 = OH$; H ; $R^3 = H_2$; $R^4 = CHO$
\n(10) $R^1 = R^2 = O$; $R^3 = H_2$; $R^4 = L$
\n(11) $R^1 = R^3 = O$; $R^2 = H_2$; $R^4 = L$
\n(12) $R^1 = R^3 = H_2$; $R^2 = f-OH$, $\alpha - H$; $R^4 = CH_2OH$
\n(13) $R^1 = R^2 = f-OH$, $\alpha - H$; $R^3 = O$; $R^4 = CH_2OH$

1427

We thank Prof. R.H. Thomson and Dr. A.G.M. Barrett for high resolution mass spectra and Prof. S. Balasubramaniam for the identification of plant material.

SCHEME. i, Ac₂0, pyridine; ii, Li- $(\text{CH}_2\text{NH}_2)_{2}$, reflux, 30 mins; iii, CrO₃, pyridine, ^{25}C ; iv, NaBH₄, CH₃OH, 25°C, 10 mins; v, NH₂NH₂.H₂O (98-100%), (CH₂OH)₂, KOH, 150-160°~ for 3 hr and 210°C for 4 hr.

REFERENCES AND FOOTNOTES

- 1. A.A.L. Gunatilaka, N.P.D. Nanayakkara and M.U.S. Sultanbawa, J.C.S. Chem. Comm., 1979, 434.
- 2. A.A.L. Gunatilaka, N.P.D. Nanayakkara and M.U.S. Sultanbawa, Tet. Letters, 1979, 1127.
- 3. R.B. Boar, L. Joukhadar, J.F. McGhie, S.C. Misra, A.G.M. Barrett, D.H.R. Barton and P.A. Prokopiou, J.C.S. Chem Comm., 1978, 68.
- 4. S.M. Kupchan, W.A. Court, R.G. Dailey, C.J. Gilmore and R.F. Bryan, J. Amer, Chem. Sot., 1972, 94, 7194.
- 5. T.R. Govindachari, N. Viswanathan, B.R. Pai, U.R. Rao and M. Siriniwasan, Tetrahedron, 1967, 23, 1901.
- 6. T. Kikuchi, M. Takayama, T. Toyoda, M. Arimoto and M. Niwa, Tet. Letters, 1971, 1535.
- 7. For physical data, see Scheme. The composition of all new compounds was confirmed by elemental analysis and/or high resolution mass spectrometry; structural assignments are based on i.r., $^{1}_{\rm H}$ -n.m.r. and in some cases 13 C-n.m.r. spectroscopic evidence.
- 8. B.J. Clarke, J.L. Courtney and W. Stern, Austral. J. Chem., 1970, <u>23</u>, 1651.

(Received in UK 3 February 1981)