STRUCTURES OF KOKZEYLANOL AND KOKZEYLANONOL TWO NEW NATURAL TRI- AND TETRA- OXYGENATED D:A-FRIEDO-OLEANANES

A.A. Leslie Gunatilaka, N.P. Dhammika Nanayakkara and M. U**vais** S. Sultanbawa Deparment of Chemistry, University of Peradeniya, Peradeniya

Sri Lanka

<u>Abstract</u>: Kokzeylanol and kokzeylanonol obtained from <u>Kokoona</u> <u>zeylanica</u> have been shown to be 6β , 27-dihydroxy-D:A-friedo-oleana-3, 21-dione (2), respectively by the deoxygenation of their 27-acetoxy derivatives using Lithium-ethylene diamine reduction coupled with spectroscopic and irradiation methods. Kokzeylanonol represents the first tetraoxygenated D:A-friedo-oleanane isolated from a natural source.

Recent reports from this laboratory dealt with the application of an irradiation method¹ and triphenyl tinhydride deoxygenation of the derived thiobenzoates² in the structure elucidation of some novel 27-hydroxy-D:A-friedo-olean-21-ones and 6 β -hydroxy-D:A-friedo-oleananes isolated from Kokoona zeylanica Thwaites (Celastraceae). We herein report the application of Li-(CH₂NH₂)₂ deoxygenation³ of sterically hindered primary alcohol function in the structure determination two new 27-hydroxyfriedelanes, kokzeylanol and kokzeylanonol obtained from the same plant; latter being the first example of a tetraoxygenated D:A-friedo-oleanane and is significant as polyoxygenated triterpenes are reported to exhibit anti-tumour activity.⁴ This also constitutes the first report of the application of metal-amine reduction to deoxygenate primary alcohols. The methods known hitherto for this purpose are cumbersome and/or lead to rearranged products.^{5,6}

Spectroscopic evidence suggests that kokzeylanol⁷ is a D:A-friedo-oleanane triterpene containing oxo, hydroxymethine and hydroxymethyl groups $[(\Upsilon 3610, 3490 \text{ and } 1714 \text{ cm}^{-1}; \delta,$ 3.50 (1H, m, W¹/₂ 18 Hz), 4.08 (2H, br s); <u>m/z</u> 427 (100%, <u>M</u>⁺-CH₂OH)¹]; and kokzeylanonol is a D:A-friedo-oleanane with two oxo, a hydroxymethine and a hydroxymethyl function $[(\Upsilon 3490, 1722 \text{ and } 1714 \text{ cm}^{-1}; \delta, 3.50 (1H, m, W¹/₂ 18 Hz), 4.10 (2H, br s); <u>m/z</u> 441 (45%, <u>M</u>⁺-CH₂OH)]. The$ steric crowding around the hydroxymethyl group in both compounds is apparent from the

1425

¹H-n.m.r. spectra of their acetates which show a clear dd (J 13 Hz). In order to relate kokzeylanol (1) and kokzeylanonol (2) to known D:A-friedo-oleananes, a deoxygenation procedure applicable to both primary and secondary alcohol functions was required. Presence of oxo groups ruled out the possible use of conventional Huang-Minlon reduction.^{5,6} Triphenyltin hydride reduction previously employed by us to deoxygenate 6**β**-hydroxy- and 21**β**-hydroxy-friedelanes² having secondary alcohol groups, when attempted on 27-thiobenzoyloxyfriedelane (6) afforded 27-benzyloxyfriedelane (7) and not the deoxygenated product (friedelan). However, reduction of the derived acetate (5) by Barton's procedure³, but employing Li-(CH₂NH₂)₂ proved to be the method of choice as exemplified by successful deoxygenation of several triterpene acetates

Li- $(CH_2NH_2)_2$ reduction of kokzeylanol diacetate (3), m.p. 250-252°C, followed by oxidation $(CrO_3-pyridine)$ furnished friedelin, and similar treatment of kokzeylanonol diacetate (4), m.p. 270-272°C, gave friedelan-3,21-dione (11)¹ (see Scheme). Kokzeylanol (1) has also been related to friedelan-3,6-dione (10) and the relationship between the two natural products was shown by Huang-Minlon reduction of both giving 6 β ,27-dihydroxyfriedelane (12), m.p. 282-284°C, identical with an authentic sample.¹ The foregoing evidence suggest that kokzeylanol is 6 β ,27-dihydroxy-D:A-friedo-oleanan-3-one (1) and kokzeylanonol is 6 β ,27-dihydroxy-D:A-friedo-oleanan-3-one (2).

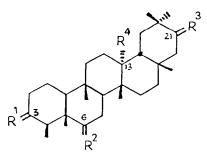
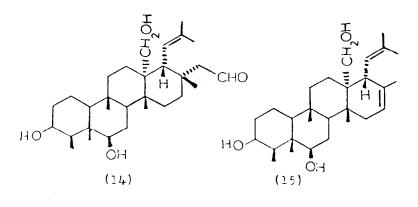
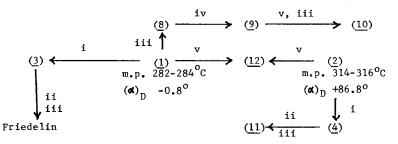

bearing both primary and secondary alcohol functions (see Table).

TABLE. Li-(CH₂NH₂)₂ reduction of triterpene acetates


<u>Product(s) (% Yield)^a</u>
Friedelan (65); 27-Hydroxyfriedelane (30)
Friedelin ^b (75)
Friedelin ^b (60)
Friedelan-3,21-dione ^b (40)

^aReductions were carried out by heating a mixture of the triterpene acetate (50 mg), lithium (100 mg) and dry ethylene diamine (10 ml) under reflux in an atmosphere of nitrogen for 30 mins. Usual work-up (Ref. 3) afforded the product(s).


^bProduct obtained after oxidation with CrO₃-pyridine at 25°C, for 12 h. The presence of 21-oxo and 27-hydroxy functions in kokzeylanonol (2) was further confirmed by the irradiation^{1,8} (125 W for 12 h, in refluxing dry dioxan) of the NaBH₄ reduction product (<u>13</u>) yielding 3β,6β,27-trihydroxy-E-secofriedel-19-ene-21-carbaldehyde (<u>14</u>)⁷, m.p. 130-132°C (60% yield), formed by intramolecular 7-H abstraction within the biradical produced by d-cleavage and 3β,6β,27-trihydroxy-21,22-bisnor-E-secofriedel-16,19-diene (<u>15</u>), m.p. 98-100°C (30% yield), formed by Norrish type II process from (<u>14</u>).

(1)
$$\mathbb{R}^{1} = \mathbb{C}$$
; $\mathbb{R}^{2} = \beta - \mathbb{OH}$, $\mathbb{C} - \mathbb{H}$; $\mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OH}$
(2) $\mathbb{R}^{1} = \mathbb{K}^{3} = \mathbb{O}$; $\mathbb{R}^{2} = \beta - \mathbb{OH}$, $\mathfrak{o} - \mathbb{H}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OH}$
(3) $\mathbb{R}^{1} = \mathbb{O}$; $\mathbb{R}^{2} = \beta - \mathbb{OAC}$, $\mathfrak{a} - \mathbb{H}$; $\mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OAC}$
(4) $\mathbb{R}^{1} = \mathbb{R}^{3} = \mathbb{O}$; $\mathbb{R}^{2} = \beta - \mathbb{OAC}$, $\mathfrak{a} - \mathbb{H}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OAC}$
(5) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OAC}$
(6) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OC}(=\mathbb{S})\mathbb{Ph}$
(7) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OC}(=\mathbb{S})\mathbb{Ph}$
(8) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{O}$; $\mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{0}$
(9) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{O}$; $\mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{CH}_{0}$
(10) $\mathbb{R}^{1} = \mathbb{R}^{2} = \mathbb{O}$; $\mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{M}_{2}$
(11) $\mathbb{R}^{1} = \mathbb{R}^{3} = \mathbb{O}$; $\mathbb{R}^{2} = \mathbb{H}_{2}$; $\mathbb{R}^{4} = \mathbb{M}_{2}$
(12) $\mathbb{R}^{1} = \mathbb{R}^{3} = \mathbb{H}_{2}$; $\mathbb{R}^{2} = \beta - \mathbb{OH}$, $\mathfrak{a} - \mathbb{H}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OH}$
(13) $\mathbb{R}^{1} = \mathbb{R}^{2} = \beta - \mathbb{OH}$, $\mathfrak{a} - \mathbb{H}$; $\mathbb{R}^{3} = \mathbb{O}$; $\mathbb{R}^{4} = \mathbb{CH}_{2}\mathbb{OH}$

We thank Prof. R.H. Thomson and Dr. A.G.M. Barrett for high resolution mass spectra and Prof. S. Balasubramaniam for the identification of plant material.

SCHEME. i, Ac_20 , pyridine; ii, $Li-(CH_2NH_2)_2$, reflux, 30 mins; iii, CrO_3 , pyridine, 25°C; iv, NaBH₄, CH_3OH , 25°C, 10 mins; v, NH_2NH_2 . H_2O (98-100%), $(CH_2OH)_2$, KOH, 150-160°C for 3 hr and 210°C for 4 hr.

REFERENCES AND FOOTNOTES

- 1. A.A.L. Gunatilaka, N.P.D. Nanayakkara and M.U.S. Sultanbawa, J.C.S. Chem. Comm., 1979, 434.
- 2. A.A.L. Gunatilaka, N.P.D. Nanayakkara and M.U.S. Sultanbawa, Tet. Letters, 1979, 1127.
- R.B. Boar, L. Joukhadar, J.F. McGhie, S.C. Misra, A.G.M. Barrett, D.H.R. Barton and P.A. Prokopiou, <u>J.C.S. Chem Comm.</u>, 1978, 68.
- S.M. Kupchan, W.A. Court, R.G. Dailey, C.J. Gilmore and R.F. Bryan, <u>J. Amer, Chem. Soc.</u>, 1972, <u>94</u>, 7194.
- T.R. Govindachari, N. Viswanathan, B.R. Pai, U.R. Rao and M. Siriniwasan, <u>Tetrahedron</u>, 1967, <u>23</u>, 1901.
- 6. T. Kikuchi, M. Takayama, T. Toyoda, M. Arimoto and M. Niwa, Tet. Letters, 1971, 1535.
- 7. For physical data, see Scheme. The composition of all new compounds was confirmed by elemental analysis and/or high resolution mass spectrometry; structural assignments are based on i.r., ¹H-n.m.r. and in some cases ¹³C-n.m.r. spectroscopic evidence.
- 8. B.J. Clarke, J.L. Courtney and W. Stern, Austral. J. Chem., 1970, 23, 1651.

(Received in UK 3 February 1981)